A Sensitive and Quantitative Polymerase Chain Reaction-Based Cell Free In Vitro Non-Homologous End Joining Assay for Hematopoietic Stem Cells
نویسندگان
چکیده
Hematopoietic stem cells (HSCs) are responsible for sustaining hematopoietic homeostasis and regeneration after injury for the entire lifespan of an organism. Maintenance of genomic stability is crucial for the preservation of HSCs, which depends on their efficient repair of DNA damage, particularly DNA double strand breaks (DSBs). Because of the paucity of HSCs and lack of sensitive assays, directly measuring the ability of HSCs to repair DSBs has been difficult. Therefore, we developed a sensitive and quantitative cell free in vitro non-homologous end joining (NHEJ) assay using linearized plasmids as the substrates and quantitative polymerase chain reaction (qPCR) technique. This assay can sensitively detect DSB repair via NHEJ in less than 1 µg 293T cell nuclear proteins or nuclear extracts from about 5,000 to 10,000 human BM CD34(+) hematopoietic cells. Using this assay, we confirmed that human bone marrow HSCs (CD34(+)CD38(-) cells) are less proficient in the repair of DSBs by NHEJ than HPCs (CD34(+)CD38(+) cells). In contrast, mouse quiescent HSCs (Pyronin-Y(low) LKS(+) cells) and cycling HSCs (Pyronin-Y(hi) LKS(+) cells) repaired the damage more efficiently than HPCs (LKS(-) cells). The difference in the abilities of human and mouse HSCs and HPCs to repair DSBs through NHEJ is likely attributed to their differential expression of key NHEJ DNA damage repair genes such as LIG4. These findings suggest that the qPCR-based cell free in vitro NHEJ assay can be used to sensitively measure the ability of human and mouse HSCs to repair DSBs.
منابع مشابه
Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells
Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...
متن کاملDifferentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells
Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...
متن کاملبهبود بقا بیماران مبتلا به لوسمی لنفوبلاستیک حاد فاقد HLA-A3/11 برای KIR3DL2 دهنده پس از پیوند سلول های بنیادی خونساز از خواهر یا برادر با HLA مشابه بدون تخلیه سلول T
A potential factor influencing hematopoietic stem cells transplantation (HSCT) outcome is the presence of donor-derived alloreactive natural killer (NK) cells. This retrospective analysis studied the impact of NK alloreactivity based on the missing KIR ligand, for acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) patients undergoing non-T-cell depleted HLA-identical sibling HS...
متن کاملFetal RHD Genotyping Using Real-Time Polymerase Chain Reaction Analysis of Cell-Free Fetal DNA in Pregnancy of RhD Negative Women in South of Iran
Objective Maternal-fetal RhD antigen incompatibility causes approximately 50% of clinically significant alloimmunization cases. The routine use of prophylactic anti-D immunoglobulin has dramatically reduced hemolytic disease of the fetus and newborn. Recently, fetal RHD genotyping in RhD negative pregnant women has been suggested for appropriate use of anti-D immunoglobulin antenatal prophylaxi...
متن کاملIn vitro Induction of Fetal Hemoglobin in Erythroid Cells Derived from CD133 Cells by Transforming Growth Factor-b and Stem Cell Factor
Increased fetal hemoglobin (HbF) in b-globin gene disorders ameliorates the clinical symptoms of the underlying disease. 5-azacytidine, butyrate and hydroxyurea, have been shown to activate g-globin gene expression. It has also been found that hematopoietic growth factors can influence expression of g-globin in erythroid cultures and in animal models. This study was designed to evaluate the in ...
متن کامل